Acta Cryst. (1974). B30, 2791

TbFe₂, a rhombohedral Laves phase.* By A.E.DWIGHT and C.W.KIMBALL, Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, U.S.A.

(Received 16 November 1973; accepted 1 July 1974)

Rhombohedral, $R\overline{3}m$, $a_R = 5.207$ (2) Å, $\alpha = 59.62$ (2)°, $a_H = 5.189$ (2), $c_H = 12.821$ (4) Å, Z = 2. Tb in 2(c) $(x = \frac{1}{8})$, Fe in 1(b) and 3(e) sites. The normal MgCu₂-type structure is distorted by an elongation along the [111] direction. Dependence of distortion on composition was studied in Tb(Fe_{1-x}Al_x)₂, Tb(Fe_{1-x}Co_x)₂ and $(Y_{1-x}Tb_x)Fe_2$ ternary compounds.

Introduction

Clark & Belson (1972) and Koon, Schindler & Carter (1971) describe giant room-temperature magnetostrictive effects in TbFe₂, but do not report the distorted crystal structure. Buschow & van Stapele (1970) report a MgCu₂-type structure, a=7.351 Å.

Experimental

Arc-melted alloys were homogenized at 800°C. Debye-Scherrer patterns with filtered Co, Fe and Cr radiation showed line-splitting in high-angle reflections. By graphical methods hexagonal indices were obtained, for a cell with three times the volume of the primitive rhombohedral cell. Computer programs were used to calculate intensities (Yvon, Jeitschko & Parthé, 1969) and to refine cell constants (Mueller, Heaton & Miller, 1960).

To confirm the structure, step-scan data were obtained with a General Electric Company diffractometer using filtered Co radiation for the cubic 731 and 642 reflections. A least-squares routine was used to fit a calculated profile of the multi-indexed peak.

* Based on work performed under the auspices of the National Science Foundation.

Fig. 1. Data points obtained by step scanning, and the calculated profile of the 'cubic' 731 reflection (actually six closely spaced hexagonal reflections).

Fig. 2. Relation between the primitive rhombohedral and tripled hexagonal unit cells of TbFe₂.

Results

Fig. 1 shows the data points obtained by step scanning and the calculated profile of the 731 reflection. Indices, d

Table 1. Observed and calculated d spacings and intensities for hexagonal (rhombohedral) TbFe₂, Debye–Scherrer film, Co Kα radiation

The abbreviation n.o. = not observed

hkl HKL hkl do dc Io	I _c
$111 \int 003 111 4.21 4.2738$	125
111 $101 010 4.2413 m$	367
200 012 101 n.o. 3.680 n.o	o. 0
$220 \int 104 \ 211 \ 2.6096$	1000
$110 10\overline{1} 2.59 2.5948 S$	984
(015 221 2⋅2272	725
331 { 113 201 2.205 2.2180 VS	5 1431
$021 11\overline{1} 2.2134$	711
$222 \int 006 222 2.1369 w$	98
222 202 200 2.11 2.1206	287
400 024 022 n.o. 1.840 n.c	. 28
107 322 1.6962	33
331 { 205 311 1.68 1.690 vw	33
$\begin{bmatrix} 211 & 01\overline{2} & 1.684 \end{bmatrix}$	65

Table 1 (cont.)

	(116 13	32	1.6495		0
420	$\begin{cases} 112 \\ 122 \end{cases}$	21 n.o.	1.642	n. o.	0
	018 3	32 1.502	1.5096	w	185
422	214 30	01	1.5009		363
	300 1	1.50	1.4981	S	181
	009 3	33	1.4246		58
551	027 1.	33	1.4197		171
333	125 32	20 1.416	1.4161	S	340
	303 22	2T	1.4138		340
440	208 2 ⁴	42 1.301	1.3048	S	352
440	[220 20	02 1.298	1.2974	S	347
	∫ 119 43	32	1.2488		30
531] 217 2	41	1.2455		30
551	223 3	1 <u>1</u> 1·241	1.2415	UW	30
	131 2	12	1.2407		30
442	[1,0,10 4]	33	1.2329		0
600	{ 306 1	14 n.o.	1.2267	n.o.	0
000	312 3	01	1.2236		200
620	j 128 4	31 1.163	B 1·1657	m	200
020	[134 3	21 1.161	1.1617	<u>د</u>	200
	0,1,11 3	44 1.122	2 1.1282	w	222
533	{ 315 4		1.1211	c	111
		13 1.119	• 1.1193	5	111
(00	0,2,10 4	42	1.1136	m	40
622	{ 226 0	$\frac{42}{2}$ 1.107	1.1090		25 46
		22	1.1067	n 0.	40
444	10,0,124	44 n.o.	1.0684	<u> </u>	11
	$\begin{bmatrix} 404 & 4 \\ 2011 & 5 \end{bmatrix}$	00 n.o.	1.0247	<u>п</u> .е.	15
	2,0,11 5	55 n.o.	1.0347	п	30
551	137 4	22 03	1.0305		30
711	137 4	3T 1.029	1.0201	w	15
	321 0	37 1020	1.0278		30
	$\begin{bmatrix} 321\\ 2 & 1 & 10 & 5 \end{bmatrix}$	32 no	1.0234	n.o•	0
640	232 1	$\frac{32}{37}$ no	1.0180	n.0•	0
	1, 1, 12, 5	43	0.9880		258
	318 5	12 0.984	4 0.9839	m	264
642	324 4	iĪ	0.9815		268
	410 1	23 0.98	0.9807	S	270
	1,0,13 5	44	0.9633		163
	1,2,11 5	42 0.95	8 0.9611	m	332
553	229 5	31	0.9592		336
731	407 5	11	0.9577	_	171
	235 2	4 <u>1</u> 0·95:	55 0 ∙9566	S	1/2
	[143 2	.32	0.9559		693
800	048 4	40 0.91	88 0·9 2 0	m	702
	0,2,13 5	53 n.o.	0.9031	n .o.	/6
	{ 327 2	05	0.8985		220
	[051 2	23	0.8962		148

spacings and intensities are given in Table 1. A projection of the hexagonal and rhombohedral cells is shown in Fig. 2.

Ternary alloys were made in which Y, Co or Al, singly, were substituted into TbFe₂. With increasing Al substitution, the volume per formula weight (V/M) increased, but the distortion decreased (Fig. 3) until at Tb(Fe_{0.75}Al_{0.25})₂ the structure became the normal MgCu₂ type.

When Tb is partially replaced with Y (Fig. 4), the V/M remains nearly constant, and the distortion decreases, so that the structure becomes cubic at approximately Tb_{0.25}Y_{0.75}Fe₂. In a third series of ternary alloys (Fig. 5) Co replaced part of the Fe. The rhombohedral distortion persists in most of the series, becoming zero at approximately Tb(Fe_{0.1}Co₀₉.)₂. The V/M decreases with increasing Co. No increase in cell volume between 5 and 10 at. % Co substitution was observed, as in the case reported by Mansey, Raynor & Harris (1968) for the ErFe₂-ErCo₂ system.

Discussion

The rhombohedral distortion in 'cubic' lanthanide compounds may be peculiar to Tb compounds, as the normal MgCu₂-type structure was found in GdFe₂ and DyFe₂, and other lanthanide–Fe₂ alloys. Busch & Levy (1970) reported rhombohedral distortion in TbP, TbAs and TbSb, but tetragonal distortion in DyP, DyAs and DySb. The rhombohedral distortion exists at less than 17K; at higher temperatures the compounds have the NaCl-type structure.

In an investigation of perovskite structures, Jacobson, Tofield & Fender (1973) reported BaTbO₃ to be rhombohedral with $\alpha = 60^{\circ}$ 22'. They offer the explanation that rareearth ions are slightly too large to stabilize a perfectly cubic perovskite structure. This explanation cannot be valid for the deformed cubic structure of TbFe₂, because the larger Gd ion forms a normal MgCu₂-type structure. Moreover, we shall report elsewhere (Kimball, Dwight, Preston & Taneja, 1974) on corroborative evidence that the distortion in the TbFe₂-YFe₂ system is related to the magnetic properties.

Fig. 3. V/M and α in Tb(Fe_{1-x}Al_x)₂ alloys with increasing Al substitution.

Fig. 4. V/M and α in $Y_{1-x}Tb_xFe_2$ alloys with increasing Tb substitution.

Fig. 5. V/M and α in Tb(Fe_{1-x}Co_x)₂ alloys with increasing Co substitution.

A rhombohedral distortion of a cubic structure in $Tb_3Fe_5O_{12}$ at 6.75K has been reported by Tcheou, Bertaut, Delapalme, Sayetat & Fuess (1970). These authors have discussed the magnetic ordering of the Tb and Fe moments and its relationship to the crystal structure.

Although Tb is the only lanthanide with compounds that exhibit rhombohedral distortion, actinide compounds are known that distort rhombohedrally at low temperatures (below their Curie temperature). Examples are US and USe (Marples, 1970) and NpN (Lander & Mueller, 1973).

The authors gratefully acknowledge assistance from H. Knott, G. H. Lander and M. H. Mueller. A portion of this work was performed at Argonne National Laboratory under the auspices of the U.S. Atomic Energy Commission.

References

- BUSCH, G. & LEVY, F. (1970). Distortions Tétragonales et Trigonales du Réseau de Certains Composés Trivalents des Terres Rares, in Les Eléments des Terres Rares, pp. 363– 371. Paris: CNRS.
- BUSCHOW, K. H. J. & VAN STAPELE, R. P. (1970). J. Appl. Phys. 41, 4066–4069.
- CLARK, A. E. & BELSON, H. S. (1972). Phys. Rev. B5, 3642-3644.
- JACOBSON, A. J., TOFIELD, B. C. & FENDER, B. E. F. (1973). Proc. Tenth Rare Earth Research Conf. pp. 194–199.
- KIMBALL, C. W., DWIGHT, A. E., PRESTON, R. S. & TANEJA, A. P. (1974). To be published.
- KOON, N. C., SCHINDLER, A. I. & CARTER, F. L. (1971). Phys. Lett. 37A, 413-414.
- LANDER, G. H. & MUELLER, M. H. (1973). *Phys. Rev. Lett.* In the press.
- MANSEY, R. C., RAYNOR, G. V. & HARRIS, I. R. (1968). J. Less-Common Metals, 14, 337-347.
- MARPLES, J. A. C. (1970). J. Phys. Chem. Solids, 31, 2431-2439.
- MUELLER, M. H., HEATON, L. & MILLER, K. T. (1960). Acta Cryst. 13, 828–829.
- TCHEOU, F., BERTAUT, E. F., DELAPALME, A., SAYETAT, F. & FUESS, H. (1970). Ordre Magnétique de la Terre Rare dans les Grenats. Application au Grenat Ferrite de Terbium, in Les Eléments des Terres Rares, pp. 313-332. Paris: CNRS.
- YVON, K., JEITSCHKO, W. & PARTHÉ, E. (1969). A Fortran IV Program for the Intensity Calculation of Powder Patterns. Univ. of Pennsylvania, Philadelphia.

Notes and News

Announcements and other items of crystallographic interest will be published under this heading at the discretion of the Editorial Board. The notes (in duplicate) should be sent to the Executive Secretary of the International Union of Crystallography (J. N. King, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England).

Tenth International Congress of Crystallography Amsterdam, The Netherlands, 7–15 August 1975 Travel awards

The U.S.A. National Committee for Crystallography is seeking funds to provide travel awards for participants from the U.S.A. in the Congress. Although the availability is uncertain at present, applications are invited. Awards will not exceed the price of the economy-class round-trip air fare between Amsterdam and the international airport nearest applicant's residence, and may be less if necessary to accommodate a larger number of applicants selected. Among criteria for selection are that the applicant will make a substantial contribution to the Congress, that the applicant's research potential will be enhanced by attendance, and that the U.S.A. will be represented with quality and distinction.

Application forms are available from the Executive Secretary, NRC Division of Chemistry and Chemical Technology, National Academy of Sciences, 2101 Constitution Avenue, N.W., Washington, D.C. 20418, and should be returned no later than December 31, 1974.